quadratic mean
- 均方值;二次方平均值
-
Existence Law of Quadratic Mean R-S Integral
均方R-S积分的存在性
-
Comparision between Quadratic Mean R-S Integral and General R-S Integral
均方RS积分与普通RS积分的比较
-
The relative scale parameter p was highly correlated with stand age and quadratic mean diameter at breast height ( DBH );
参数p与林分年龄、平方平均直径呈紧密的正相关性,为分布的相对尺度参数;
-
The location parameter q was highly correlated with quadratic mean DBH and the shape parameter r indicated the inflection point of the distribution .
参数q与林分平方平均直径紧密相关,为分布的位置参数,指代林分分布数据的平均大小;参数r决定分布曲线的拐点,为分布的形状参数。
-
The total quota of water use in different level of water saving was put forward based on regression analysis , probability estimation analysis , advanced quadratic mean method and geometric mean method .
通过逐步回归法、概率测算法、二次平均先进法和简单几何平均法得到北京市宾馆不同节水水平下综合用水定额值;
-
This paper discusses the existence law of quadratic mean R-S integral in the process of 2-th moment , operation property as well as other properties ( figure characteristics , mid-value law , integral inequality ) .
本文讨论了二阶矩过程的均方R-S积分的存在定理、运算性质及其它性质(数字特征、中值定理、积分不等式);
-
As the LMS algorithm is a kind of noise gradient method , the convergence gain should be lessened gradually to ensure that the quadratic mean deviation of the steady state takes the quadratic mean deviation of the system as its limit .
另外,由于LMS算法是噪声梯度法,须使其计算步长逐渐缩小,以保证LMS算法的稳态均方差趋向于系统的最小均方差。
-
The existence law of quadratic mean R-S integral in the process of 2-th moment is discussed , the differences between two integrals are compared and explained . Finally the logical foundation of R-S quadratic mean integral is set up .
讨论了二阶矩过程的均方R-S积分的存在性问题,同时与普通R-S积分进行了比较,搞清了两种积分的异同,建立了均方R-S积分的逻辑基础。
-
Extensive simulation results show , that algorithm adapts to fast time-varying data like orbit parameters of the space target , and quadratic mean deviation of the orbit parameters estimated excels the theory quadratic mean deviation of various sensors , and less than the LMS estimation ' s.
仿真实验表明,该算法适用于空间目标轨道参数等快时变数据,估计得到的轨道参数均方差,优于各个传感器的理论均方差,同时也小于LMS算法获得的均方差。
-
Independent variables are diameter class , relative diameter ( RD ), number of stems per hectare , basal area per hectare , quadratic mean diameter ( DG ), degree of closeness ( P ) and sum of squared diameter of larger trees than the predicting diameter class .
自变量有径阶、相对直径、每公顷株数、每公顷断面积、平方平均直径、郁闭度和大于所估径阶的林木直径平方和。
-
Masry ( 1986,1987 ) discussed both quadratic - mean consistency and asymptotic normality for dependent sample and asymptotically uncorrelated ;
在相依样本情形,Masry([3],[4]19861987)分别对ρ-混合和渐近不相关情形讨论fn(x)的均方收敛和渐近正态性;